Tableau

If data is a supermarket, Tableau is a self-checkout machine

I’ve been helping to introduce Tableau to people who are used to getting their data by putting their query through IT and then plotting it in Excel when they get the extract hours or days later. It can be hard to convince people to use it; some say the current system works okay already, others say they don’t want to learn something new which might be difficult, others say they’ve tried it but it doesn’t work perfectly. While working on this, we came across a great analogy for Tableau, what it’s for, and why we’re getting people to help themselves by using it. It’s long and a bit convoluted, but it fits most businesses pretty well:

Remember a few years ago when self-checkout machines turned up at the supermarkets? You’d stand in line for the regular checkout, looking at the new machines, but you didn’t use them because you didn’t know how, and nobody else was sure either. And even when people did start to use them, there were teething problems; every so often there’d be an item it didn’t recognise, or an item too light for the bagging area to detect, so the process would break and it felt like the whole thing was worse than the old checkouts.

But the more you used them, the more errors happened, and the better the self-checkouts got by learning from those errors. Now, they work really smoothly, much faster than going through the old checkouts. And remember, just because things seemed to work in the old checkouts, that doesn’t mean that they did. I often bought a bag of apples but got charged too much because the cashier thought it was a more expensive variety, like I’d buy Braeburns but get charged for Pink Ladies. That’s an error in the process, but you wouldn’t know if you didn’t check your receipt with an expert eye anyway. And how often does something go wrong and the cashier calls over somebody else? It was never a smooth process to begin with, you’re just used to its flaws.

That’s the difference between opening a ticket with IT and going through their queue, and getting the data you need yourself. We’re the people who hover round the self-checkouts, ready to help if there’s an issue. It’s a bit daunting at first, but just try it out; scan your stuff, see how it works, and we’ll be there as soon as you’ve got an unexpected item.

This analogy has been really useful for helping contextualise Tableau as a way of working that speeds up their day, rather than an additional tool to learn that slows down their day.

If you’ve got any similar analogies, I’d love to hear them!

Standard

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s